Presence of Trans-synaptic Neurons Derived From Olfactory Mucosa Transplanted After Spinal Cord Injury

    loading  Checking for direct PDF access through Ovid


Study Design.

Using biotinylated dextran amine (BDA) and wheat germ agglutinin (WGA) tracers, we measured the effectiveness of olfactory mucosa (OM) transplantation as a scaffold in a rat model of chronic spinal cord injury (SCI).


We examined whether OM transplantation for chronic SCI in rats results in reconstruction of neuronal pathways by both regeneration of the remaining axons and supply of OM-derived trans-synaptic neurons.

Summary of Background Data.

OM is one of the ideal scaffolds for axonal regeneration after chronic SCI.


Rats received a mild contusion at vertebral level T6–T7. Two weeks after SCI, enhanced green fluorescent protein rat-derived OM, respiratory mucosa, and phosphate-buffered saline were transplanted into each group of SCI rats. Ten weeks after SCI, BDA was injected into the right sensorimotor cortex. Eleven weeks after SCI, WGA was injected into the L1–L2 posterior column to label the corticospinal tract retrogradely and trans-synaptically. Twelve weeks after SCI, rats were killed and their spinal cords were divided into cervical (area a), thoracic-injured (area b), and lower thoracic portions (area c). Immunohistochemically, sections of area (b) were evaluated by counting cells positive for enhanced green fluorescent protein, 4′,6-diamidino-2-phenylindole, WGA, and BDA (OM and respiratory mucosa groups). Axonal regenerations were estimated by counting WGA- and BDA-positive dots in transverse sections of area (a) and area (c).


Compared with respiratory mucosa and phosphate-buffered saline transplantation, OM transplantation increased the number of WGA-positive dots in area (a), and the number of BDA-positive dots in area (c) was more after OM transplantation than after phosphate-buffered saline transplantation. Furthermore, the number of quadruple-positive cells in area (b) was much higher after OM transplantation.


Our results provide both indirect and direct evidence for the presence of trans-synaptic neurons. OM transplantation in rats with chronic SCI resulted in reconstruction of neural pathways by both providing trans-synaptic neurons and supporting regeneration of remaining axons. The olfactory mucosa is thought to be an efficacious scaffold to produce the relay neuron in chronic spinal cord injury.


Level of Evidence: N/A

Related Topics

    loading  Loading Related Articles