Hydrodynamic Lyapunov Modes in Translation-Invariant Systems


    loading  Checking for direct PDF access through Ovid

Abstract

We study the implications of translation invariance on the tangent dynamics of extended dynamical systems, within a random matrix approximation. In a model system, we show the existence of hydrodynamic modes in the slowly growing part of the Lyapunov spectrum, which are analogous to the hydrodynamic modes discovered numerically by Dellago, Posch, and Hoover. The hydrodynamic Lyapunov vectors lose the typical random structure and exhibit instead the structure of weakly perturbed coherent long-wavelength waves. We show further that the amplitude of the perturbations vanishes in the thermodynamic limit, and that the associated Lyapunov exponents are universal.

    loading  Loading Related Articles