A New Approach to Solve the Low-lying States of the Schroedinger Equation


    loading  Checking for direct PDF access through Ovid

Abstract

We review a new iterative procedure to solve the low-lying states of the Schroedinger equation, done in collaboration with Richard Friedberg. For the groundstate energy, the nth order iterative energy is bounded by a finite limit, independent of n; thereby it avoids some of the inherent difficulties faced by the usual perturbative series expansions. For a fairly large class of problems, this new procedure can be proved to give convergent iterative solutions. These convergent solutions include the long standing difficult problem of a quartic potential with either symmetric or asymmetric minima

    loading  Loading Related Articles