Statistical Properties of the Burgers Equation with Brownian Initial Velocity

    loading  Checking for direct PDF access through Ovid


We study the one-dimensional Burgers equation in the inviscid limit for Brownian initial velocity (i.e. the initial velocity is a two-sided Brownian motion that starts from the origin x=0). We obtain the one-point distribution of the velocity field in closed analytical form. In the limit where we are far from the origin, we also obtain the two-point and higher-order distributions. We show how they factorize and recover the statistical invariance through translations for the distributions of velocity increments and Lagrangian increments. We also derive the velocity structure functions and we recover the bifractality of the inverse Lagrangian map. Then, for the case where the initial density is uniform, we obtain the distribution of the density field and its n-point correlations. In the same limit, we derive the n-point distributions of the Lagrangian displacement field and the properties of shocks. We note that both the stable-clustering ansatz and the Press-Schechter mass function, that are widely used in the cosmological context, happen to be exact for this one-dimensional version of the adhesion model.

    loading  Loading Related Articles