Genistein inhibits glucocorticoid amplification in adipose tissue by suppression of 11β-hydroxysteroid dehydrogenase type 1

    loading  Checking for direct PDF access through Ovid

Abstract

Excess glucocorticoids promote visceral obesity, hyperlipidemia, and insulin resistance. The main regulator of intracellular glucocorticoid levels is 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive glucocorticoids into bioactive forms such as cortisol in humans and corticosterone in rodents. Hexose-6-phosphate dehydrogenase (H6PD), which is colocalized with 11β-HSD1 in the intralumen of the endoplasmic reticulum, supplies a crucial coenzyme, NADPH, for full reductase activity of 11β-HSD1. Therefore, it is possible that inhibition of 11β-HSD1 will become a considerable medical treatment for metabolic diseases including obesity and diabetes. Genistein, a soy isoflavone, has received attention for its therapeutic potential for obesity, diabetes, and cardiovascular disease, and has been proposed as a promising compound for the treatment of metabolic disorders. However, the mechanisms underlying the pleiotropic anti-obesity effects of genistein have not been fully clarified. Here, we demonstrate that genistein was able to inhibit 11β-HSD1 and H6PD activities within 10 or 20 min, in dose- and time-dependent manners. Inhibition of 11β-HSD2 activity was not observed in rat kidney microsomes. The inhibition was not reversed by two estrogen receptor antagonists, tamoxifen and ICI182,780. A kinetic study revealed that genistein acted as a non-competitive inhibitor of 11β-HSD1, and its apparent Km value for 11-dehydrocorticosterone was 0.5 μM. Genistein also acted as a non-competitive inhibitor of H6PD, and its apparent Km values for G6P and NADP were 0.9 and 3.3 μM, respectively. These results suggest that genistein may exert its inhibitory effect by interacting with these enzymes.

Related Topics

    loading  Loading Related Articles