Synthesis of novel 13α-18-norandrostane–ferrocene conjugatesviahomogeneous catalytic methods and their investigation on TRPV1 receptor activation

    loading  Checking for direct PDF access through Ovid

Abstract

13α-Steroid–ferrocene derivatives were synthesized via two reaction pathways starting from an unnatural 16-keto-18-nor-13α-steroid. The unnatural steroid was converted to ferrocene derivatives via copper-catalyzed azide–alkyne cycloaddition or palladium-catalyzed aminocarbonylation. 16-Azido- and 16-N-(prop-2-ynyl)-carboxamido-steroids were synthesized as starting materials for azide–alkyne cycloaddition with the appropriate ferrocene derivatives. Based on our earlier work, aminocarbonylation of 16-iodo-16-ene and 16-iodo-15-ene derivatives was studied with ferrocenylmethylamine. The new products were obtained in moderate to good yields and were characterized by 1H and 13C NMR, IR and MS. The solid state structure of the starting material 13α-18-norandrostan-16-one and two carboxamide products were determined by X-ray crystallography. Evidences were provided that the N-propargyl-carboxamide compound as well as its ferrocenylmethyltriazole derivative are able to decrease the activation of TRPV1 receptor on TRG neurons.

Related Topics

    loading  Loading Related Articles