Abstract 160: DNA-Methylation and Aging. Contribution of Biological Age to Recovery After Ischemic Stroke


    loading  Checking for direct PDF access through Ovid

Abstract

Background: Stroke has a great impact in functional status of patients, although there are substantial interindividual differences in recovery capacity. Apart from stroke severity, age is considered an important predictor of outcome after stroke, but aging is not only due to chronological age. There are age-related DNA-methylation changes in multiple CpG sites across the genome that can be used to estimate the biological age (b-Age), and we seek to analyze the impact of this b-Age in recovery after an ischemic stroke.Methods: We include 600 individuals with acute ischemic stroke assessed in Hospital del Mar (Barcelona). Demographic and clinical data such as chronological age (c-Age), vascular risk factors, NIHSS at admission, recanalization treatment (rtPA or endovascular treatment), previous modified Rankin scale (p-mRS) and 3 months post stroke functional status (3-mRS) were registered. Biological age (b-Age) was estimated with Hannumm algorithm, based on DNA methylation in 71 CpGs.Results: The bivariate analyses for association with 3-mRS showed a significant results of NIHSS, c-Age, b-Age, p-mRS, and current smoking (all with p<0.001). Recanalization treatment showed no significant differences in bivariate analysis. In multivariate ordinal models, b-Age kept its significance (p=0.025) nullifying c-Age (p=0.84). Initial NIHSS, p-mRS and recanalization treatment kept also significant results (p<0.001).Conclusions: Biological Age, estimated by DNA methylation, is an independent predictor of stroke prognosis, irrespective to chronological age. "Healthy aging” affects the capacity of recovering after an ischemic stroke.

    loading  Loading Related Articles