AT1 Receptor Blockade Regulates the Local Angiotensin II System in Cerebral Microvessels From Spontaneously Hypertensive Rats

    loading  Checking for direct PDF access through Ovid


Background and Purpose—Blockade of angiotensin II AT1 receptors in cerebral microvessels protects against brain ischemia and inflammation. In this study, we tried to clarify the presence and regulation of the local renin-angiotensin system (RAS) in brain microvessels in hypertension.Methods—Spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) controls were treated with an AT1 receptor antagonist (candesartan, 0.3 mg/kg per day) via subcutaneous osmotic minipumps for 4 weeks. The expression and localization of RAS components and the effect of AT1 receptor blockade were assessed by Affymetrix microarray, qRT-PCR, Western blots, immunohistochemistry and immunofluorescence.Results—We found transcripts of most of RAS components in our microarray database, and confirmed their expression by qRT-PCR. Angiotensinogen (Aogen), angiotensin-converting enzyme (ACE) and AT1 receptors were localized to the endothelium. There was no evidence of AT2 receptor localization in the microvascular endothelium. In SHR, (pro)renin receptor mRNA and AT1 receptor mRNA and protein expression were higher, whereas Aogen, ACE mRNA and AT2 receptor mRNA and protein expression were lower than in WKY rats. Candesartan treatment increased Aogen, ACE and AT2 receptor in SHR, and increased ACE and decreased Aogen in WKY rats, without affecting the (pro)renin and AT1 receptors.Conclusions—Increased (pro)renin and AT1 receptor expression in SHR substantiates the importance of the local RAS overdrive in the cerebrovascular pathophysiology in hypertension. AT1 receptor blockade and increased AT2 receptor stimulation after administration of candesartan may contribute to the protection against brain ischemia and inflammation.

    loading  Loading Related Articles