Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation

    loading  Checking for direct PDF access through Ovid

Abstract

Recently, many studies have shown that nanoparticles can translocate from the lungs to the circulatory system. As a particulate foreign body, nanoparticles could induce host responses such as reactive oxygen species (ROS) generation, inflammatory cytokine and matrix metalloproteinase (MMP) release which play a major role in tissue destruction and remodeling. However, the direct effects of nanoparticles on leukocytes, especially monocytes, are still unclear. The objective of the present study was to compare the ability of Nano-Co and Nano-TiO2 to cause alteration of transcription and activity of MMPs and to explore possible mechanisms. We hypothesized that non-toxic doses of some transition metal nanoparticles stimulate an imbalance of MMP/TIMP that cause MMP production that may contribute to their health effects. To test this hypothesis, U937 cells were treated with Nano-Co and Nano-TiO2 and cytotoxic effects and ROS generation were measured. The alteration of MMP-2 and MMP-9 expression and activity of MMP-2 and MMP-9 after exposure to these metal nanoparticles were subsequently determined. To investigate the potential signaling pathways involved in the Nano-Co-induced MMP activation, the ROS scavengers or inhibitors, AP-1 inhibitor, and protein tyrosine kinase (PTK) inhibitors were also used to pre-treat U937 cells. Our results demonstrated that exposure of U937 cells to Nano-Co, but not to Nano-TiO2, at a dose that does not cause cytotoxicity, resulted in ROS generation and up-regulation of MMP-2 and MMP-9 mRNA expression.. Our results also showed dose- and time-related increases in pro-MMP-2 and pro-MMP-9 gelatinolytic activities in conditioned media after exposure of U937 cells to Nano-Co, but not to Nano-TiO2. Nano-Co-induced pro-MMP-2 and pro-MMP-9 activity increases were inhibited by pre-treatment with ROS scavengers or inhibitors. We also demonstrated dose- and time-related decreases in tissue inhibitors of metalloproteinases 2 (TIMP-2) in U937 cells after exposure to Nano-Co, but not to Nano-TiO2. However, neither Nano-Co nor Nano-TiO2 exposure led to any transcriptional change of TIMP-1. The decrease of TIMP-2 after exposure to Nano-Co was also inhibited by pre-treatment with ROS scavengers or inhibitors. Our results also showed that pre-treatment of U937 cells with AP-1 inhibitor, curcumin, or the PTK specific inhibitor, herbimycin A or genistein, prior to exposure to Nano-Co, significantly abolished Nano-Co-induced pro-MMP-2 and-9 activity. Our results suggest that Nano-Co causes an imbalance between the expression and activity of MMPs and their inhibitors which is mediated by the AP-1 and tyrosine kinase pathways due to oxidative stress.

Related Topics

    loading  Loading Related Articles