Energy and nutrient density of foods in relation to their carbon footprint1-5

    loading  Checking for direct PDF access through Ovid

Abstract

Background:

A carbon footprint is the sum of greenhouse gas emissions (GHGEs) associated with food production, processing, transporting, and retailing.

Objective:

We examined the relation between the energy and nutrient content of foods and associated GHGEs as expressed as g CO2 equivalents.

Design:

GHGE values, which were calculated and provided by a French supermarket chain, were merged with the Composition Nutritionnelle des Aliments (French food-composition table) nutrient- composition data for 483 foods and beverages from the French Agency for Food, Environmental and Occupational Health and Safety. Foods were aggregated into 34 food categories and 5 major food groups as follows: meat and meat products, milk and dairy products, frozen and processed fruit and vegetables, grains, and sweets. Energy density was expressed as kcal/100 g. Nutrient density was determined by using 2 alternative nutrient-density scores, each based on the sum of the percentage of daily values for 6 or 15 nutrients, respectively. The energy and nutrient densities of foods were linked to log-transformed GHGE values expressed per 100 g or 100 kcal.

Results:

Grains and sweets had lowest GHGEs (per 100 g and 100 kcal) but had high energy density and a low nutrient content. The more-nutrient-dense animal products, including meat and dairy, had higher GHGE values per 100 g but much lower values per 100 kcal. In general, a higher nutrient density of foods was associated with higher GHGEs per 100 kcal, although the slopes of fitted lines varied for meat and dairy compared with fats and sweets.

Conclusions:

Considerations of the environmental impact of foods need to be linked to concerns about nutrient density and health. The point at which the higher carbon footprint of some nutrient-dense foods is offset by their higher nutritional value is a priority area for additional research. Am J Clin Nutr 2015;101:184-91.

Related Topics

    loading  Loading Related Articles