Interleukin-6 Regulation of Direct Lung Ischemia Reperfusion Injury

    loading  Checking for direct PDF access through Ovid

Abstract

Background.

Lung ischemia reperfusion injury continues to adversely affect patient and graft survival after transplantation. While the role of interleukin-6 has been studied in ischemia-reperfusion models of intestine, liver, and heart, its participation in lung reperfusion injury has not been characterized.

Methods.

We administered recombinant interleukin-6 to rat lungs through the intratracheal route before inducing left lung ischemia and reperfusion. Multiple in-vivo indicators of left lung injury were studied, as were transactivation patterns for nuclear factor kappa B and signal transduction and activators of transcription-3. Downstream effects on the elaboration of proinflammatory chemokines and cytokines were also studied.

Results.

Recombinant interleukin-6 reduced endothelial disruption and neutrophil sequestration in left lung and alveolar spaces, resulting in improved oxygenation after ischemia and 4 hours of reperfusion. This protection was associated with decreased nuclear factor kappa B and signal transduction and activators of transcription-3 nuclear translocation early in reperfusion, and diminished proinflammatory mediator secretion late in reperfusion.

Conclusions.

Further studies focusing on the effects of recombinant interleukin-6 in large animal models are warranted, as this may be a novel strategy to improve outcomes after lung transplantation. Intratracheal administration may focus its efficacy on the lung while reducing effects on other organ systems during organ procurement.

Related Topics

    loading  Loading Related Articles