Megavoltage Computed Tomography Image-based Low-dose Rate Intracavitary Brachytherapy Planning for Cervical Carcinoma

    loading  Checking for direct PDF access through Ovid

Abstract

Initial results of megavoltage computed tomography (MVCT) brachytherapy treatment planning are presented, using a commercially available helical tomotherapy treatment unit and standard low dose rate (LDR) brachytherapy applicators used for treatment of cervical carcinoma. The accuracy of MVCT imaging techniques, and dosimetric accuracy of the CT based plans were tested with in-house and commercially-available phantoms. Three dimensional (3D) dose distributions were computed and compared to the two dimensional (2D) dosimetry results. Minimal doses received by the 2 cm3 of bladder and rectum receiving the highest doses (DB2cc and DR2cc, respectively) were computed from dose-volume histograms and compared to the doses computed for the standard ICRU bladder and rectal reference dose points. Phantom test objects in MVCT image sets were localized with sub-millimetric accuracy, and the accuracy of the MVCT-based dose calculation was verified. Fifteen brachytherapy insertions were also analyzed. The ICRU rectal point dose did not differ significantly from DR2cc (p=0.749, mean difference was 24 cGy ± 283 cGy). The ICRU bladder point dose was significantly lower than the DB2cc (p=0.024, mean difference was 291 cGy ± 444 cGy). The median volumes of bladder and rectum receiving at least the corresponding ICRU reference point dose were 6.1 cm3 and 2.0 cm3, respectively. Our initial experience in using MVCT imaging for clinical LDR gynecological brachytherapy indicates that the MVCT images are of sufficient quality for use in 3D, MVCT-based dose planning.

Related Topics

    loading  Loading Related Articles