TRAVELING-WAVE SOLUTIONS OF THE CALOGERO-DEGASPERIS-FOKAS EQUATION IN 2+1 DIMENSIONS

    loading  Checking for direct PDF access through Ovid

Abstract

Soliton solutions are among the more interesting solutions of the (2+1)-dimensional integrable Calogero-Degasperis-Fokas (CDF) equation. We previously derived a complete group classiffication for the CDF equation in 2+1 dimensions. Using classical Lie symmetries, we now consider traveling-wave reductions with a variable velocity depending on an arbitrary function. The corresponding solutions of the (2+1)-dimensional equation involve up to three arbitrary smooth functions. The solutions consequently exhibit a rich variety of qualitative behaviors. Choosing the arbitrary functions appropriately, we exhibit solitary waves and bound states.

Related Topics

    loading  Loading Related Articles