Synthesis, configuration assignment, and simultaneous quantification by liquid chromatography coupled to tandem mass spectrometry, of dihydroanatoxin-a and dihydrohomoanatoxin-a together with the parent toxins, in axenic cyanobacterial strains and in environmental samples

    loading  Checking for direct PDF access through Ovid

Abstract

We have synthesized cis- and trans-dihydroanatoxin-a and cis- and trans-dihydrohomoanatoxin-a using a short synthetic route. The relative configuration of N-tert-butoxycarbonyl-cis-dihydroanatoxin-a was determined by X-ray crystallography, while that of N-tert-butoxycarbonyl-trans-dihydroanatoxin-a was confirmed by epimerization leading to the cis-diastereoisomer. The relative configuration of N-tert-butoxycarbonyl-trans- and cis-dihydrohomoanatoxin-a was inferred from their NMR spectra. Using an optimized LC–MS/MS analytical method and pure standards we have simultaneously determined anatoxin-a, homoanatoxin-a and their dihydroderivatives in axenic strains of cyanobacteria and in environmental samples from the Tarn River, France. However, in these analytical conditions, the cis- and trans-dihydroanatoxin-a and cis- and trans-dihydrohomoanatoxin-a could not be separated. In axenic strains, the dihydroderivatives represented less than 3% of the total toxin content, while in field samples dihydroanatoxin-a represented from 17% to 90% of the total toxin content. Thus, the reduction of anatoxin-a to dihydroanatoxin-a is predominant in the environment. The ratio of anatoxin-a concentration over that of homoanatoxin-a in axenic strains was variable, and among the eight strains studied we found three exclusive anatoxin-a producers and five producers of homoanatoxin-a and anatoxin-a, the latter representing from 0.5% to 2.0% of the total. In the strains studied, we have amplified by PCR, and sequenced the region of anaG coding for the methylation domain proposed to be responsible for the formation of homoanatoxin-a. The sequences showed at least 88% identity and we could not relate the toxin profile of the strains to the sequence of the methylation domain.

Highlights

▸ We have synthesied cis- and trans-dihydroanatoxin-a and dihydrohomoanatoxin-a. ▸ Their configuration was attributed by x-ray crystallography. ▸ We have quantified these compounds by LC–MS2 in biological samples. ▸ The dihydroderivatives were predominant in environmental samples. ▸ Pure cyanobacteria produced anatoxin-a or homoanatoxin-a and little dihydroderivatives.

Related Topics

    loading  Loading Related Articles