Structures ofAzemiops feaevenom phospholipases and cys-rich-secretory protein and implications for taxonomy and toxinology

    loading  Checking for direct PDF access through Ovid

Abstract

The Azemiops snakes are pit-less and phylogenetically located at the Crotalinae and Viperinae divergence. cDNAs encoding five Azemiops venom phospholipase (sPLA2) molecules were cloned and sequenced; their signal-peptides were similar to those of crotalid sPLA2s. Based on their calculated pI-values and residue-49 substitutions, they were designated as Af-E6, Af-N49a, Af-N49a1, Af-N49a2, and Af-N49b, respectively. The first three isoforms, comprising 3–4% of the venom proteins, were purified by reversed-phase HPLC. Af-E6 is catalytically active and has >80% sequence-similarity to other Glu6-PLA2 (a pitviper venom-marker). Results of phylogenetic analyses reveal that acidic Af-N49a and Af-N49a1 are rather unique and loosely linked with crotalid PLA2s, while Af-N49b is related to the viperid PLA2s with Ser1 substitution. Notably, the Asn49-substitutions in these molecules imply catalytic-independent mechanisms. The 3D-models of Af-E6 and Af-N49a have surface electropotential maps similar to each other and to those of antiplatelet PLA2s, while the Af-N49b model is similar to basic and myotoxic sPLA2 molecules. From Azemiops feae and four other Viperidae, we cloned five novel Cys-rich secretory proteins (CRISPs). Azemiops CRISP and natriuretic-peptide precursors share more sequence similarities with those of crotalid venoms than with viperid venoms, further supporting the theory that Azemiops are sister taxons to pit vipers, especially Tropedolaemus.

Related Topics

    loading  Loading Related Articles