Differential endopeptidase activity of different forms of type A botulinum neurotoxin: A unique relationship between the size of the substrate and activity of the enzyme


    loading  Checking for direct PDF access through Ovid

Abstract

Botulinum neurotoxins (BoNTs; serotypes A-G) are metalloproteases, which cleave and inactivate cellular proteins essential for neurotransmitter release. In bacterial cultures, BoNTs are secreted as a complex of the neurotoxin and a group of neurotoxin associated proteins (NAPs). Under physiological condition (pH 7.4), this complex is believed to be dissociated to separate the neurotoxin from NAPs. BoNT consists of a 50 kDa light (L) chain (LC or catalytic domain) and a 100 kDa heavy (H) chain (or HC) linked through a disulfide bond and other non-covalent interactions. The cell intoxication involves three major steps; binding, membrane translocation and inhibition of neurotransmitter release. The last step of intoxication, endopeptidase activity, is very unique and specific that can be used for detection of the complex and isolated forms of the toxin. A fluorescent tag-labeled synthetic peptide (SNAPtide) derived from a segment of SNAP-25, an intracellular substrate of BoNT/A, is used to detect and assay the endopeptidase activity of BoNT/A. The detection of the signal is based on the change in the fluorescence energy transfer after selective cleavage of the peptide by the BoNT/A.In this report, we demonstrate that SNAPtide as a commonly used substrate widely differ in reaction with BoNT/A complex, BoNT/A, and BoNT/A light chain. These findings have implications for assays used in detection, and in screening potential inhibitors.HighlightsReduction of disulfide bond is required for optimum activity of BoNT/A toxin and BoNT/A Complex.The size of the enzyme and the substrate plays a significant role in the endopeptidase activity.Folding and flexibility between the enzyme and the substrate, impacts its endopeptidase activity.

    loading  Loading Related Articles