Pharmacokinetics and pharmacodynamic effects of amiodarone in plasma of ponies after single intravenous administration


    loading  Checking for direct PDF access through Ovid

Abstract

Atrial fibrillation is a well-known heart disease in horses. The common therapy consists of administration of quinidine. More potent antiarrhythmic drugs have become available for human therapy and the use of these as alternatives to quinidine for equine antiarrhythmic therapy is a matter of interest. Amiodarone (AMD) is used in human medicine for treatment of many arrhythmias, including atrial fibrillation. Its disposition in horses has not yet been investigated. The purpose of this study was to measure the effect of single intravenous doses of amiodarone (5 and 7 mg/kg) on the surface electrocardiogram (ECG) of healthy minishetland ponies during the first 2 days after drug administration and to calculate pharmacokinetic parameters with a physiologically based pharmacokinetic model (PBPK) using amiodarone and desethylamiodarone (DAMD) plasma levels that were determined by high-performance liquid chromatography (HPLC). As expected for a K+-channel-blocker, the main effect on the measured ECG could be seen on the ventricular complex, as the QT interval and the T wave showed statistically significant alterations. The doses investigated were well tolerated clinically. Results from the pharmacokinetic model were found to compare well with literature data of rats, dogs, and humans. It showed a rapid distribution in the tissue, beginning with the rapidly perfused tissue, like the heart, followed by slowly perfused tissues, and finally an accumulation in fat. The half-life for total elimination was calculated to be 16.3 days with 99% eliminated by 97 days. The model predicts that approximately 96% of amiodarone is eliminated as desethylamiodarone in urine, 2% eliminated as desethylamiodarone in bile, and 2% as other metabolites.

    loading  Loading Related Articles