Intense pseudotransport of a cationic drug mediated by vacuolar ATPase: Procainamide-induced autophagic cell vacuolization


    loading  Checking for direct PDF access through Ovid

Abstract

Cationic drugs frequently exhibit large apparent volumes of distribution, consistent with various forms of cellular sequestration. The contributions of organelles and metabolic processes that may mimic drug transport were defined in human vascular smooth muscle cells. We hypothesized that procainamide-induced vacuolar cytopathology is driven by intense pseudotransport mediated by the vacuolar (V)-ATPase and pursued the characterization of vesicular trafficking alterations in this model. Large amounts of procainamide were taken up by intact cells (maximal in 2 h, reversible upon washout, apparent KM 4.69 mM; fluorometric determination of cell-associated drug). Procainamide uptake was extensively prevented or reversed by pharmacological inhibition of the V-ATPase with bafilomycin A1 or FR 167356, decreased at low extracellular pH and preceded vacuolar cell morphology. However, the uptake of procainamide was unaffected by mitochondrial poisons that reduced the uptake of rhodamine 6G. Large vacuoles induced by millimolar procainamide were labeled with the late endosome/lysosome markers Rab7 and CD63 and the autophagy effector LC3; their osmotic formation (but not procainamide uptake) was reduced by extracellular mannitol and parallel to LC3 II formation. Procainamide-induced vacuolization is associated with defective endocytosis of fluorophore-labeled bovine serum albumin, but not with induction of the unfolded protein response. The contents of a vacuole subset slowly (≥24 h) become positive for Nile red staining (phospholipidosis-like response). V-ATPase-driven ion trapping is a form of intense cation pseudotransport that concerns the uncharged form of the drugs, and is associated with a vacuolar, autophagic and evolutive cytopathology and profound effects on vesicular trafficking.

    loading  Loading Related Articles