Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation

    loading  Checking for direct PDF access through Ovid


The HGF/Met signaling pathway is deregulated in majority of cancers and is associated with poor prognosis in breast cancer. Delphinidin, present in pigmented fruits and vegetables possesses potent anti-oxidant, anti-inflammatory and anti-angiogenic properties. Here, we assessed the anti-proliferative and anti-invasive effects of delphinidin on HGF-mediated responses in the immortalized MCF-10A breast cell line. Treatment of cells with delphinidin prior to exposure to exogenous HGF resulted in the inhibition of HGF-mediated (i) tyrosyl-phosphorylation and increased expression of Met receptor, (ii) phosphorylation of downstream regulators such as FAK and Src and (iii) induction of adaptor proteins including paxillin, Gab-1 and GRB-2. In addition, delphinidin treatment resulted in significant inhibition of HGF-activated (i) Ras-ERK MAPKs and (ii) PI3K/AKT/mTOR/p70S6K pathways. Delphinidin was found to repress HGF-activated NFκB transcription with a decrease in (i) phosphorylation of IKKα/β and IκBα, and (ii) activation and nuclear translocation of NFκB/p65. Inhibition of HGF-mediated membrane translocation of PKCα as well as decreased phosphorylation of STAT3 was further observed in delphinidin treated cells. Finally, decreased cell viability of Met receptor expressing breast cancer cells treated with delphinidin argues for a potential role of the agent in the prevention of HGF-mediated activation of various signaling pathways implicated in breast cancer.

    loading  Loading Related Articles