Paraoxonase 1 (PON1) status and substrate hydrolysis


    loading  Checking for direct PDF access through Ovid

Abstract

Paraoxonase 1 (PON1) hydrolyzes a number of organophosphorus (OP) compounds including insecticides and nerve agents. The in vivo efficacy of PON1 to protect against a specific OP exposure depends on the catalytic efficiency of hydrolysis. The Q192R polymorphism affects the catalytic efficiency of hydrolysis of some substrates and not others. While PON1R192 hydrolyzes paraoxon approximately 9-times as efficiently as PON1Q192, the efficiency is insufficient to provide in vivo protection against paraoxon/parathion exposure. The two PON1192 alloforms have nearly equivalent but higher catalytic efficiencies for hydrolyzing diazoxon (DZO) and provide equivalent in vivo protection against DZO exposures. On the other hand, PON1R192 is significantly more efficient in hydrolyzing chlorpyrifos oxon (CPO) than PON1Q192 and provides better protection against CPO exposure. Thus, for some exposures it is only the level of plasma PON1 that is important, whereas for others it is both plasma level and the PON1192 alloform(s) present in plasma that are important. In no case is the plasma level of PON1 unimportant, provided that the catalytic efficiency is sufficient to protect against the exposure. Two-substrate enzyme assay/analysis protocols that reveal both PON1 plasma levels and PON1192 phenotype (QQ; QR; RR) are designed to optimize the separation of PON1192 phenotypes; however, they have not been optimized for evaluating in vivo rates of OP detoxication. This study describes the adaptation of a non-OP, two-substrate determination of PON1 status to the conversion of the PON1 status data to physiologically relevant rates of DZO and CPO detoxication. Conversion factors were generated for rates of hydrolysis of different substrates.

    loading  Loading Related Articles