Identification of 5-hydroxymethylfurfural in cigarette smoke extract as a new substrate metabolically activated by human cytochrome P450 2A13

    loading  Checking for direct PDF access through Ovid


Cytochrome P450 2A13 (CYP2A13) is an extrahepatic enzyme mainly expressed in the human respiratory system and is reported to mediate tobacco-specific N-nitrosamines (TSNA) metabolism in cigarette smoke. This study aimed to identify other new substrates of CYP2A13 in cigarette smoke and their corresponding respiratory toxicity. Following separation by HPLC, GC–MS/MS, NMR and cytotoxicity assays in BEAS-2B cells stably expressing CYP2A13 (B-2A13), 5-Hydroxymethylfurfural (5-HMF) was screened and identified in the 4–5min section of cigarette smoke extract (CSE). In vitro metabolism results showed that CYP2A13 mediated the fast clearance of 5-HMF and formed the metabolite 5-HMF acid (5-HMFA). CSE 5-HMF (CSE-5-HMF) showed cytotoxicity similar to that of standard 5-HMF in B-2A13 and B-2A5 cells, which was inhibited by 8-methoxypsoralen (8-MOP), a CYP enzyme inhibitor. Mouse CYP2A5, a homologous CYP enzyme to CYP2A13, shares many substrates with CYP2A13 in cigarette smoke. Thus, CYP2A5−/− mice were generated to explore the role of CYP2A5 in 5-HMF bioactivation. Compared with CYP2A5−/− mice, WT mice showed serious histological lung and nasal olfactory mucosa damage, as well as increased inflammatory cells and elevated TNF-α and IL-6 levels in bronchoalveolar lavage fluid. Besides, nasal microsomes undertook fast 5-HMFA formation in WT mice than that in CYP2A5−/− mice, which could be inhibited by 8-MOP. This study is the first to identify 5-HMF as a new toxic substrate of human CYP2A13 in cigarette smoke, it may play a potential role in cigarette smoke-induced respiratory injuries.HIGHLIGHTS5-Hydroxymethylfurfural (5-HMF) is identified as a new substrate of human CYP2A135-HMF is an abundant and important toxic ingredient in cigarette smokeCYP2A13 plays important roles in cigarette smoke-induced respiratory injuries

    loading  Loading Related Articles