Stimulation of eryptosis by broad-spectrum insect repellentN,N-Diethyl-3-methylbenzamide (DEET)

    loading  Checking for direct PDF access through Ovid


N,N-Diethyl-3-methylbenzamide (DEET) is the most widely used insect repellent in the world. Adverse effects following DEET exposure are well documented. Moreover, DEET has been shown to possess cytotoxic and apoptotic properties in nucleated cells. Although red blood cells (RBCs) lack intracellular organelles, they nevertheless undergo programmed cell death termed eryptosis. Compromised RBC health contributes to the development of anemia; a condition affecting 25% of the global population. This study investigated the interaction between DEET and human RBCs, and explored accompanying biochemical and molecular alterations. RBCs at 5% hematocrit were incubated in presence and absence of 1–5 mM (0.02%–0.1%) of DEET for 6 h at 37 °C. Hemolysis was spectrophotometrically determined by hemoglobin release, while major eryptotic events were analyzed by flow cytometer. Phosphatidylserine (PS) exposure was detected with Annexin-V-FITC, cell volume by forward scatter (FSC) of light, intracellular calcium with Fluo-3/AM, and reactive oxygen species with 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA). DEET caused slight hemolysis at 4 and 5 mM, and significantly increased Annexin-V-FITC and Fluo3 fluorescence, with reduced FSC at 5 mM. Removal of extracellular Ca2+ abolished DEET-induced Fluo3 fluorescence but had no effect on Annexin-V binding. Importantly, blockade of eryptotic signaling mediators p38 MAPK, caspases, protein kinase C, casein kinase 1, or necroptotic kinases receptor-interacting protein 1 and mixed lineage kinase domain-like protein, with small molecule inhibitors, did not ameliorate DEET-mediated PS externalization. In conclusion, DEET elicits suicidal erythrocyte death; an event characterized by loss of membrane asymmetry, cell shrinkage, and elevations in intracellular Ca2+ mainly through dysregulated Ca2+ influx.HighlightsDEET possesses a weak hemolytic potential in human erythrocytes.DEET induces eryptosis characterized by cell membrane scrambling with phosphatidylserine (PS) externalizationDEET-induced premature cell death is accompanied by cell shrinkage and dysregulated calcium influx.DEET-induced PS exposure is not ameliorated by extracellular calcium removal nor by intracellular calcium chelation.Suicidal erythrocyte death caused by DEET is not mediated through oxidative stress or a specific signaling pathway.

    loading  Loading Related Articles