Increasing ERK phosphorylation by inhibition of p38 activity protects against cadmium-induced apoptotic cell death through ERK/Drp1/p38 signaling axis in spermatocyte-derived GC-2spd cells


    loading  Checking for direct PDF access through Ovid

Abstract

Many studies report that cadmium chloride (CdCl2)-induces oxidative stress is associated with male reproductive damage in the testes. CdCl2 also induces mitochondrial fission by increasing dynamin-related protein 1 (Drp1) expression as well as the mitochondria-dependent apoptosis pathway by extracellular signal-regulated kinase (ERK) activation. However, it remains unclear whether mechanisms linked to the mitochondrial damage signal via CdCl2-induced mitogen-activated protein kinases (MAPK) cause damage to spermatocytes. In this study, increased intracellular and mitochondrial reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm) depolarization, and mitochondrial fragmentation and swelling were observed at 5 μM of CdCl2 exposure, resulting in increased apoptotic cell death. Moreover, CdCl2-induced cell death is closely associated with the ERK/Drp1/p38 signaling axis. Interestingly, SB203580, a p38 inhibitor, effectively prevented CdCl2-induced apoptotic cell death by reducing ΔΨm depolarization and intracellular and mitochondrial ROS levels. Knockdown of Drp1 expression diminished CdCl2-induced mitochondrial deformation and ROS generation and protected GC-2spd cells from apoptotic cell death. In addition, electron microscopy showed that p38 inhibition reduced CdCl2-induced mitochondrial interior damage more effectively than N-acetyl-L-cysteine (NAC), an ROS scavenger; ERK inhibition; or Drp1 knockdown. Therefore, these results demonstrate that inhibition of p38 activity prevents CdCl2-induced apoptotic GC-2spd cell death by reducing depolarization of mitochondrial membrane potential and mitochondrial ROS levels via ERK phosphorylation in a signal pathway different from the CdCl2-induced ERK/Drp1/p38 axis and suggest a therapeutic strategy for CdCl2-induced male infertility.HighlightsCadmium induces apoptosis through the ERK/Drp1/p38 signaling axis in GC-2spd cells.p38 inhibitor decreases Cadmium-induced ΔΨm depolarization and ROS.Increased pERK by inhibition of p38 protects against Cadmium-induced cell death.

    loading  Loading Related Articles