2,3′,4,4′,5-Pentachlorobiphenyl Induces Inflammatory Responses in the Thyroid Through JNK and Aryl Hydrocarbon Receptor-Mediated Pathway

    loading  Checking for direct PDF access through Ovid


Polychlorinated biphenyls (PCBs) are durable and widely distributed environmental contaminants that can compromise the normal functions of multiple organs and systems; one important mechanism is the induction of inflammatory disorders. In this study, we explored the influences of 2,3′,4,4′,5-pentachlorobiphenyl (PCB118) on inflammatory responses and its underlying mechanisms in the thyroid. Wistar rats were administered PCB118 intraperitoneally at 0, 10, 100, and 1000 μg/kg/d, 5 days a week for 13 weeks; rat thyroid FRTL-5 cells were treated with PCB118 (0, 0.25, 2.5, and 25 nM) for indicated time. Results revealed that PCB118 promoted the generation of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and intercellular adhesion molecule-1 (ICAM-1) in a time- and dose-related manner and decreased sodium/iodide symporter (NIS) protein expression. Moreover, stimulation with PCB118 resulted in the upregulation of the aryl hydrocarbon receptor (AhR)-responsive gene cytochrome P450 1A1 in FRTL-5 cells; whereas pretreatment with the AhR inhibitor α-naphthoflavone or AhR small interfering RNA (siRNA) suppressed AhR, CYP1A1, IL-6, and ICAM-1 and restored NIS expression. In vivo and in vitro studies also suggested that the c-Jun N-terminal kinase (JNK) pathway was activated on PCB118 exposure, and the experiments using siRNA for JNK partially blocked PCB118-induced upregulation of IL-6 and ICAM-1 and downregulation of NIS. Altogether, PCB118 stimulates production of IL-6, TNF-α, and ICAM-1 in the thyroid through AhR and JNK activations and subsequently interferes with NIS expression, resulting in the disruption of thyroid structure and function.

Related Topics

    loading  Loading Related Articles