Pyrazinamide Induced Rat Cholestatic Liver Injury through Inhibition of FXR Regulatory Effect on Bile Acid Synthesis and Transport

    loading  Checking for direct PDF access through Ovid


Pyrazinamide (PZA) is an indispensable first-line drug used for the treatment of tuberculosis which may cause serious hepatotoxicity; however, the mechanisms underlying these toxicities are poorly understood. Cholestasis plays an important role in drug-induced liver injury. Since there were no previous published works reported cholestasis and PZA hepatotoxicity relationship, this study aimed to identify whether PZA can induce liver injury with characterized evidences of cholestasis and to clarify expression changes of proteins related to both bile acid synthesis and transport in PZA-induced liver injury. PZA (2 g/kg) was administered for 7 consecutive days by oral gavage. Results showed there were 2-fold elevation in both ALT and AST serum levels in PZA-treated rats. In addition, a 10-fold increment in serum total bile acid was observed after PZA administration. The mRNA and protein expressions of bile acid synthesis and transport parameters were markedly altered, in which FXR, Bsep, Mrp2, Mdr2, Ostα/β, Oatp1a1, Oatp1b2, and Cyp8b1 were decreased (P < .05), while Mrp3, Ntcp, Oatp1a4, and Cyp7a1 were increased (P < .05). Moreover, treatment with the FXR agonist obeticholic acid (OCA) generated obvious reductions in serum ALT, AST, and TBA levels in PZA-treated rats. Those effects were due to transcriptional regulation of pre-mentioned target genes by OCA. Taken together, these results suggested that PZA-induced cholestatic liver injury was related to FXR inhibition, leading to the dysfunction in bile acid synthesis and transport.

Related Topics

    loading  Loading Related Articles