From the Cover: Prenatal Nicotinic Exposure Attenuates Respiratory Chemoreflexes Associated With Downregulation of Tyrosine Hydroxylase and Neurokinin 1 Receptor in Rat Pup Carotid Body

    loading  Checking for direct PDF access through Ovid


Maternal cigarette smoke is the major risk of sudden infant death syndrome (SIDS). A depressed ventilatory response to hypoxia (HVR) and hypercapnia (HCVR) is thought to be responsible for the pathogenesis of SIDS and the carotid body is critically involved in these responses. We have recently reported that prenatal nicotinic exposure (PNE) over the full gestation induces depressed HVR in rat pups. Here, we asked whether PNE (1) depressed not only HVR but also HCVR that were dependent on the carotid body, (2) affected some important receptors and neurochemicals expressed in the carotid body, such as tyrosine hydroxylase (TH), neurokinin-1 receptor (NK1R), and α7 nicotinic acetylcholine receptor (α7nAChR), and (3) blunted the ventilatory responses to activation of these receptors. To this end, HVR and HCVR in Ctrl and PNE pups were measured with plethysmography before and after carotid body ablation (Series I), mRNA expression and/or immunoreactivity (IR) of TH, NK1R, and α7nAChR in the carotid body were examined by RT-PCR and immunohistochemistry (Series II), and the ventilatory responses were tested before and after intracarotid injection of substance P (NK1R agonist) and AR-R17779 (α7nAChR agonist) (Series III). Our results showed that PNE (1) significantly depressed both HVR and HCVR and these depressions were abolished by carotid body ablation, (2) reduced the relative population of glomus cells, mRNA NK1R, and α7nAChR and IR of NK1R and TH in the carotid body, and (3) decreased ventilatory responses to intracarotid injection of substance P or AR-R17779. These results suggest that PNE acting via the carotid body could strikingly blunt HVR and HCVR, likely through downregulating TH and NK1R.

Related Topics

    loading  Loading Related Articles