THE XENOTRANSPLANTATION OF GOAT AND HUMAN HEMATOPOIETIC CELLS TO SHEEP FETUSES1

    loading  Checking for direct PDF access through Ovid

Abstract

Hematopoietic xenografts were carried out in three experiments using goat fetal liver (44-48 days, experiments I and II) or purified human CD 34+ cells (experiment III) as the donor cells. Recipients were sheep fetuses at 41-47 days of gestation. Goat fetal liver cells were either injected without any pretreatment or stimulated by preincubation in a culturing in goat phytohemagglutinin-stimulated lymphocyte supernatant. Human CD 34+ myeloid progenitor cells were purified from bone marrow by minimacs immunomagnetic purification and cultured in medium supplemented with stem cell factor, IL3, and IL6. Goat-sheep chimerism was assessed by flow cytometry analysis (FCA) of peripheral blood and bone marrow cells using a mouse anti-goat CD 45 monoclonal antibody and by karyotype analysis of peripheral blood from goat/sheep chimeras. Human cell engraftment was assessed by polymerase chain reaction amplification of the human DAX1 gene in blood and bone marrow DNA from sheep which had received human cells. In the three experiments, a mean of 76% (26 of 34) of injected fetuses were born alive without any clinical evidence of graft-versus-host disease. Three lambs were found to be goat/sheep chimeric after flow cytometry analysis (peripheral blood and bone marrow) and karyotype (peripheral blood) analysis. Both tissues continued to express goat cells at 6 or 12 months (last assessment) depending on the experiment. No human chimerism was detected using polymerase chain reaction amplification in peripheral blood and bone marrow of any of the six sheep grafted with human cells. These data and those also obtained on other species (human, pig/sheep) show that it is possible to carry out hematopoietic xenografts using the sheep fetus as recipient provided both donor and recipient fetal cells are processed during the period of tolerance to foreign antigens.

Related Topics

    loading  Loading Related Articles