A Critical Role for TGF-β/Fc and Nonlytic IL-2/Fc Fusion Proteins in Promoting Chimerism and Donor-Specific Tolerance

    loading  Checking for direct PDF access through Ovid


BackgroundImmunoglobulin-cytokine fusion molecules have been shown to be the new generation of immunomodulating agents in transplantation tolerance induction. In the present study, we tested whether immunoregulatory cytokine fusion proteins of IL-10/Fc, TGF-β/Fc, or IL-2/Fc would enhance allogeneic bone marrow cell (BMC) engraftment and promote tolerance induction.MethodsB6 (H2b) mice were conditioned with anti-CD154 (MR1) and rapamycin (Rapa) plus 100 cGy total body irradiation (MR1/Rapa/100 cGy) and transplanted with allogeneic B10.D2 (H2d) BMC. Recipients were treated with lytic IL-2/Fc, nonlytic IL-2/Fc, TGF-β/Fc, or IL-10/Fc fusion proteins to promote chimerism to induce tolerance.ResultsDonor chimerism was achieved in 20% of recipients conditioned with MR1/Rapa/100 cGy. The addition of TGF-β/Fc (5- or 10-day treatment) or nonlytic IL-2/Fc (10-day treatment) fusion proteins to the conditioning resulted in engraftment in nearly 100% of recipients. In contrast, lytic IL-2/Fc or IL-10/Fc had no effect. The combination of nonlytic IL-2/Fc and TGF-β/Fc had a synergistic effect to promote engraftment and resulted in significantly higher donor chimerism compared with recipients conditioned with TGF-β/MR1/Rapa/100 cGy. Engraftment was durable in the majority of chimeras and increased over time. The chimeras accepted donor skin grafts and promptly rejected third-party skin grafts. Moreover, specific T cell receptor-Vβ5.½ and TCR-Vβ11 clonal deletion was detected in host T cells in chimeras, suggesting central tolerance to donor alloantigens.ConclusionsAllogeneic BMC engraftment is enhanced with TGF-β/Fc fusion protein treatment. TGF-β/Fc and nonlytic IL-2/Fc exert a synergistic effect in promotion of alloengraftment and donor-specific transplant tolerance, significantly decreasing the minimum total body irradiation dose required.

    loading  Loading Related Articles