Predicting the Onset of Inertial Effects in Sandstone Rocks


    loading  Checking for direct PDF access through Ovid

Abstract

This study presents a method to determine the onset of inertial effects at the microscopic level, to distinguish between Darcy and non-Darcy flow regions within porous media at the pore level, and to quantify the effects of retained polymer on gas mobility. Capillary pressure and polymer flood experiments were conducted using Elgin and Okesa sandstone samples. The pore-size distributions were used to study the high-velocity flow effects. A modified capillary-orifice model was used to determine the non-Darcy flow effects at the pore level, with and without residual polymer.The overall flow behavior at any flow rate may be described as the average of all contributions from the Darcy and the non-Darcy terms in all pores. Results of this study suggest that the conventional Reynolds number may lead to incorrect analysis of flow behavior when evaluating non-Darcy flow effects in porous media. The Forchheimer number, defined as the ratio of inertial forces to viscous forces, is found more adequate for analyzing microscopic flow behavior in porous media.

    loading  Loading Related Articles