Human neutrophil antigen-3a antibodies induce neutrophil stiffening and conformational activation of CD11b without shedding of L-selectin

    loading  Checking for direct PDF access through Ovid



HNA-3a antibodies induce severe transfusion-related acute lung injury (TRALI) in which neutrophils play a major role. As neutrophil passage through the pulmonary microvasculature is a critical step in the pathogenesis of TRALI, we investigated the impact of HNA-3a antibodies on two important factors that could impair granulocyte passage through lung capillaries: the elasticity of neutrophils and the expression and activation of adhesion molecules.


The impact of HNA-3a antibodies on the elasticity of neutrophils was investigated using atomic force microscopy (AFM). Neutrophils were settled on poly-2-hydroxyethyl-methacrylate–coated glass slides before treatment with anti-HNA-3a plasma samples, control plasma, or control plasma containing formyl-methionyl-leucyl-phenylalanine (fMLP). Elasticity measurements were carried out in a temperature-controlled perfusion chamber using an atomic force microscopy (AFM) device. The impact of HNA-3a antibodies on the surface expression of total CD11b, activation of CD11b, and L-selectin (CD62L) shedding was investigated by flow cytometry. The functional impact of HNA-3a antibodies on neutrophil adhesion was assessed using fibrinogen-coated plates.


HNA-3a antibodies induced stiffening of neutrophils (+24%-40%; p < 0.05) to a similar extent as fMLP. This effect was blocked by treatment of neutrophils with cytochalasin D. While total surface expression of CD11b and L-selectin on neutrophils was largely unaffected, HNA-3a antibodies induced alloantigen-specific activation of CD11b (+72%-107%; p < 0.05) and increased adhesion of neutrophils to fibrinogen.


Accumulation of neutrophils in the pulmonary microvasculature during severe TRALI is likely mediated by increased rigidity and CD11b-mediated adhesion of neutrophils leading to retention of neutrophils.

Related Topics

    loading  Loading Related Articles