Modulation of bud survival in Populus nigra sprouts in response to water stress-induced embolism

    loading  Checking for direct PDF access through Ovid


Understanding drought tolerance mechanisms requires knowledge about the induced weakness that leads to tree death. Bud survival is vital to sustain tree growth across seasons. We hypothesized that the hydraulic connection of the bud to stem xylem structures was critical for its survival. During an artificial drastic water stress, we carried out a census of bud metabolic activity of young Populus nigra L. trees by microcalorimetry. We monitored transcript expression of aquaporins (AQPs; plasma membrane intrinsic proteins (PIPs), X intrinsic proteins (XIPs) and tonoplast membrane intrinsic proteins (TIPs)) and measured local water status within the bud and tissues in the bearer shoot node by nuclear magnetic resonance (NMR) imaging. We found that the bud respiration rate was closely correlated with its water content and decreased concomitantly in buds and their surrounding bearer tissues. At the molecular level, we observed a modulation of AQP pattern expressions (PIP, TIP and XIP subfamilies) linked to water movements in living cells. However, AQP functions remain to be investigated. Both the bud and tree died beyond a threshold water content and respiration rate. Nuclear magnetic resonance images provided relevant local information about the various water reservoirs of the stem, their dynamics and their interconnections. Comparison of pith, xylem and cambium tissues revealed that the hydraulic connection between the bud and saturated parenchyma cells around the pith allowed bud desiccation to be delayed. At the tree death date, NMR images showed that the cambium tissues remained largely hydrated. Overall, the respiration rate (Rco2) and a few AQP isoforms were found to be two suitable, complementary criteria to assess the bud metabolic activity and the ability to survive a severe drought spell. Bud moisture content could be a key factor in determining the capacity of poplar to recover from water stress.

Related Topics

    loading  Loading Related Articles