Experimental Validation of ARFI Surveillance of Subcutaneous Hemorrhage (ASSH) Using Calibrated Infusions in a Tissue-Mimicking Model and Dogs

    loading  Checking for direct PDF access through Ovid

Abstract

Acoustic radiation force impulse (ARFI) Surveillance of Subcutaneous Hemorrhage (ASSH) has been previously demonstrated to differentiate bleeding phenotype and responses to therapy in dogs and humans, but to date, the method has lacked experimental validation. This work explores experimental validation of ASSH in a poroelastic tissue-mimic and in vivo in dogs. The experimental design exploits calibrated flow rates and infusion durations of evaporated milk in tofu or heparinized autologous blood in dogs. The validation approach enables controlled comparisons of ASSH-derived bleeding rate (BR) and time to hemostasis (TTH) metrics. In tissue-mimicking experiments, halving the calibrated flow rate yielded ASSH-derived BRs that decreased by 44% to 48%. Furthermore, for calibrated flow durations of 5.0 minutes and 7.0 minutes, average ASSH-derived TTH was 5.2 minutes and 7.0 minutes, respectively, with ASSH predicting the correct TTH in 78% of trials. In dogs undergoing calibrated autologous blood infusion, ASSH measured a 3-minute increase in TTH, corresponding to the same increase in the calibrated flow duration. For a measured 5% decrease in autologous infusion flow rate, ASSH detected a 7% decrease in BR. These tissue-mimicking and in vivo preclinical experimental validation studies suggest the ASSH BR and TTH measures reflect bleeding dynamics.

Related Topics

    loading  Loading Related Articles