Behavior of ultrasounds crossing perfluorocarbon liquids and random propagation times

    loading  Checking for direct PDF access through Ovid

Abstract

Random propagation times are able to model waves attenuation and velocity. It is true for electromagnetic waves (light, radar, guided propagation) and also for acoustics and ultrasounds (acoustics for high frequencies). About the latter, it can be shown that stable probability laws are well-fitted for frequencies up to dozens of megahertz in numerous cases. Nowadays, medical applications are performed using propagation through perfluorocarbon (PFC). Experiments were done to measure attenuations and phase changes. Using these results, this paper addresses the question to know if stable probability laws can be used to characterize the propagation of ultrasounds through PFC liquids.

Related Topics

    loading  Loading Related Articles