A novel contact model of piezoelectric traveling wave rotary ultrasonic motors with the finite volume method

    loading  Checking for direct PDF access through Ovid

Abstract

The operating principle of the piezoelectric traveling wave rotary ultrasonic motor is based on two energy conversion processes: the generation of the stator traveling wave and the rectification of the stator movement through the stator-rotor contact mechanism. This paper presents a methodology to model in detail the stator-rotor contact interface of these motors. A contact algorithm that couples a model of the stator which is discretized with the finite volume method and an analytical model of the rotor is presented. The outputs of the proposed model are the normal and tangential force distribution produced at the stator-rotor contact interface, contact length, height and shape of the stator traveling wave and rotor speed. The torque-speed characteristic of the USR60 is calculated with the proposed model, and the results of the model are compared versus the real torque-speed of the motor. A good agreement between the proposed model results and the torque-speed characteristic of the USR60 was observed.

Related Topics

    loading  Loading Related Articles