Role of Inflammatory Related Gene Expression in Clear Cell Renal Cell Carcinoma Development and Clinical Outcomes

    loading  Checking for direct PDF access through Ovid

Abstract

Purpose

Renal cell carcinoma is the eighth most common cancer in the United States and clear cell renal carcinoma is the most common type. Many signaling pathways are implicated in clear cell renal carcinoma development, including the inflammation pathway. However, less is known about how gene expression variation in this pathway influences clear cell renal carcinoma development and clinical outcomes.

Materials and Methods

Gene expression in tumor and adjacent normal tissues from 93 patients was detected using a genome-wide expression array. A panel of 661 inflammation related genes was then analyzed. Differential expression patterns between tumor and normal tissues were identified. Association with recurrence or survival was evaluated with genes showing significant association tested further in a validation set of 258 tumors using an independent platform (quantitative real-time polymerase chain reaction).

Results

We identified 151 genes with at least a two-fold change in gene expression between adjacent normal tissue and tumor, of which most were up-regulated in tumors. A total of 20 genes significantly associated with recurrence and/or overall survival were selected for further validation. In the replication data set high expression of GADD45G was significantly associated with a 2.09-fold (95% CI 1.08–6.14, p = 0.034) increased risk of recurrence while high CARD9, NCF2 and CIITA expression was significantly associated with a 2.52-fold (95% CI 1.24–5.12, p = 0.010), 2.26-fold (95% CI 1.12–4.58, p = 0.023) and 2.11-fold (95% CI 1.05–4.27, p = 0.037) increased risk of death, respectively.

Conclusions

Results suggest that inflammation gene expression may be significant prognostic biomarkers for the risk of recurrence (GADD45G) and death (CARD9, CIITA and NCF2) in patients with clear cell renal carcinoma.

Related Topics

    loading  Loading Related Articles