Measurement of the photoreceptor pointing in the living chick eye

    loading  Checking for direct PDF access through Ovid


The chick eye is used in the study of ocular growth and emmetropization; however optical aberrations in the lens and cornea limit the ability to visualize fine retinal structure in living eyes. These aberrations can be corrected using adaptive optics (AO) allowing for cellular level imaging in vivo. Here, this capability is extended to measure the angular tuning properties of individual photoreceptors.

The left eyes from two White Leghorn chicks (Gallus gallus domesticus) labeled chick A and chick B, were imaged using an AO flood illuminated fundus camera. By translating the entrance pupil position, the same retinal location was illuminated with light of varying angles allowing for the measurement of individual photoreceptor pointing. At 30° nasal from the pecten tip, the pointing direction for both chicks was towards the pupil center with a narrow distribution. These particular chicks were found to have a temporal (T) and inferior (I) bias in the alignment with peak positions of (0.81 T, 0.23 I) and (0.57 T, 0.18 I) mm from the pupil center for chicks A and B respectively. The rho, ρ, values for the major, ρL, and minor, ρs, axes were 0.14 and 0.17 mm−2 for chick A and 0.09 and 0.20 mm−2 for chick B. The small disarray in the alignment of the chick photoreceptors implies that the photoreceptors are aligned to optimize the light entering the eye through the central portion of the pupil aperture. The ability to measure pointing properties of individual photoreceptors will have application in the study of eye growth and various retinal disorders.

Related Topics

    loading  Loading Related Articles