Developmental trends in infant temporal processing speed

    loading  Checking for direct PDF access through Ovid

Abstract

Processing speed, which can be measured behaviorally in various sensory domains, has been shown to be a strong marker of central nervous system health and functioning in adults. Visual temporal processing speed (measured via critical flicker fusion [CFF] thresholds) represents the maximum speed at which the visual system can detect changes. Previous studies of infant CFF development have been limited and inconsistent. The present study sought to characterize the development of CFF thresholds in the first year of life using a larger sample than previous studies and a repeated measures design (in Experiment 2) to control for individual differences. Experiment 1 (n = 44 infants and n = 24 adults) used a cross-sectional design aimed at examining age-related changes that exist in CFF thresholds across infants during the first year of life. Adult data were collected to give context to infant CFF thresholds obtained under our specific stimulus conditions. Experiment 2 (N = 28) used a repeated-measures design to characterize the developmental trajectory of infant CFF thresholds between three and six months of age, based on the results of Experiment 1. Our results reveal a general increase in CFF from three to four and one-half months of age, with a high degree of variability within each age group. Infant CFF thresholds at 4.5 months of age were not significantly different from the adult average, though a regression analysis of the data from Experiment 2 predicted that infants would reach the adult average closer to 6 months of age. Developmental and clinical implications of these data are discussed.

Related Topics

    loading  Loading Related Articles