Individual differences in internal noise are consistent across two measurement techniques

    loading  Checking for direct PDF access through Ovid


Internal noise is a fundamental limiting property on visual processing. Internal noise has previously been estimated with the equivalent noise paradigm using broadband white noise masks and assuming a linear model. However, in addition to introducing noise into the detecting channel, white noise masks can suppress neural signals, and the linear model does not satisfactorily explain data from other paradigms. Here we propose estimating internal noise from a nonlinear gain control model fitted to contrast discrimination data. This method, and noise estimates from the equivalent noise paradigm, are compared to a direct psychophysical measure of noise (double-pass consistency) using a detailed dataset with seven observers. Additionally, contrast discrimination and double-pass paradigms were further examined with a refined set of conditions in 40 observers. We demonstrate that the gain control model produces more accurate double-pass consistency predictions than a linear model. We also show that the noise parameter is strongly related to consistency scores whereas the gain control parameter is not; a differentiation of which the equivalent noise paradigm is not capable. Lastly, we argue that both the contrast discrimination and the double-pass paradigms are sensitive measures of internal noise that can be used in the study of individual differences.

Related Topics

    loading  Loading Related Articles