Somatic embryogenesis in oak (Quercusspp.)


    loading  Checking for direct PDF access through Ovid

Abstract

SummaryThe present review summarizes the factors involved in controlling the process of oak somatic embryogenesis as a method for vegetative plant propagation and includes also data on artificial seed production, cryopreservation and transformation. One major limitation, the inability to initiate embryogenic cultures from mature trees, has been recently overcome. Leaves from selected cork oak trees with an age of 50 yr and more have been used to initiale somatic embryogenesis (SE) with a frequency of up to 20%. These findings offer encouraging prospects for cloning proven superior plant material and to integrate this propagation system into tree improvement programs. Once the process of SE has been initiated, the multiplication cycle proceeds via secondary embryogenesis, which can be maintained indefinitely. Problems are reported by the formation of anomalous embryos. The mutability of somatic embryogenic cell lines of various oak species has been monitored by flow cytometry and molecular markers. No somaclonal variation was detected applying random amplified polymorphic DNA (RAPD) or amplified fragment length polymorphism (AFLP) markers, whereas DNA-content measurements via flow cytometry revealed tetraploidy in some cell lines after several years of continuous subculture. Maturation and low germination frequencies are the main bottlenecks for a broader use of this technique. Recently attention has been on embryo quality and parameters for conversion capacity such as high endogenous cytokinin level and low abscisic acid (ABA) level. Although oak is probably the species that is the most well-developed system for a broadleaved forest tree, data on growth performances of somatic embryo-derived plants are rare.

    loading  Loading Related Articles