Effects of light, CO2 and humidity on carnation growth, hyperhydration and cuticular wax development in a mist reactor

    loading  Checking for direct PDF access through Ovid


SummaryPlant survival ex vitro requires functioning stomata, adequate cuticular wax composition and deposition, and normal morphological development. Light intensity, CO2 and relative humidity were altered inside an acoustic window mist reactor to study their effects on carnation (Dianthus caryophyllus) growth, stomata development, hyperhydration and epicuticular wax content. Increasing the light intensity from 65 to 145 μmol m−2 s−1 and enrichment of the gas phase with CO2 (1350 ppm) reduced the number of hyperhydrated plants from 75 to 25% and increased the percentage dry weight of normal (healthy) plants from 17 to 25%. Lowering the relative humidity (≈70% RH) surrounding the plants during the mist-off phase for the last 2 wk of culture reduced the number of hyperhydrated plants from 70 to 9% and also increased the percentage of dry weight of normal plants from 16 to 25%. The stomata on plants grown in conditions of high light or low humidity had smaller apertures and appeared sunken when compared to stomata from plants grown in low light and high relative humidity. The epicuticular wax profiles of plants from the greenhouse or Magenta boxes showed a distinct shift in wax compounds with developmental age, plant type (hyperhydrated or normal), and type of box that was used (vented or not). In addition, very different wax profiles were observed from plants grown in reactors with altered CO2 and light intensities.

    loading  Loading Related Articles