On a Class of Orthonormal Algorithms for Principal and Minor Subspace Tracking

    loading  Checking for direct PDF access through Ovid


This paper elaborates on a new class of orthonormal power-based algorithms for fast estimation and tracking of the principal or minor subspace of a vector sequence. The proposed algorithms are closely related to the natural power method that has the fastest convergence rate among many power-based methods such as the Oja method, the projection approximation subspace tracking (PAST) method, and the novel information criterion (NIC) method. A common feature of the proposed algorithms is the exact orthonormality of the weight matrix at each iteration. The orthonormality is implemented in a most efficient way. Besides the property of orthonormality, the new algorithms offer, as compared to other power based algorithms, a better numerical stability and a linear computational complexity.

    loading  Loading Related Articles