NITROUS OXIDE IN AGRICULTURAL DRAINAGE WATERS FOLLOWING FIELD FERTILISATION

    loading  Checking for direct PDF access through Ovid

Abstract

Dissolved nitrous oxide (N2O), nitrate (NO3−), and ammonium (NH4+) concentrations in an agricultural field drain were intensively measured over the period of field nitrogen (N) fertilisation and for several weeks thereafter. Supersaturations of dissolved N2O were observed in field drain waters throughout the study. On entry to an open drainage ditch, concentrations of dissolved N2O rapidly decreased and a total N2O-N emission via this pathway of 13.2 g over the period of study (45 days) was calculated. This compared with a predicted emission of the order of 300 g, based on measured losses of NO3−and NH4+in the field drainage water, and the default IPCC emission factor of 0.01 kg N2O-N per kg N entering rivers and estuaries. In contrast to widespread evidence of a clear relationship between the amount of N applied to agricultural land and subsequent direct N2O emission from the soil surface, the relationship between the amount of N2O in soil drainage waters and the amount of N applied was poor. We conclude that the complexity, both spatially and temporally, of the processes ultimately responsible for the amount of N2O in agricultural drainage waters make a straightforward relationship between N2O concentration and N application rate unlikely in all but the simplest of systems.

Related Topics

    loading  Loading Related Articles